Given \(q\) queries, you must find answer for each query.
For each query, you are given an positive integer \(n\ (1 \leq n \leq 10^{14})\).
Count the number of pairs \((a, b)\) that satisfies:
- \(1 \leq a < b \leq n\)
- \(a \times b\) is a perfect square.
Since the result can be large, output it under modulo \(977555333311111\).
Input
-
The first line contains a positive integer \(q\).
-
The second line contains \(q\) queries of positive integer \(n_1, n_2, \dots, n_q\).
Output
- In the p-th line, output a single number is the answer for query \(n_p\) under modulo \(977555333311111\).
Scoring
-
Subtask 1: \(16.67\)% tests for \(q = 1\) and \(1 \leq n \leq 10^6\).
-
Subtask 2: \(16.67\)% tests for \(q = 1\) and \(1 \leq n \leq 10^{14}\).
-
Subtask 3: \(16.67\)% tests for \(1 \leq q \leq 10\) and \(1 \leq n \leq 10^{12}\).
-
Subtask 4: \(16.67\)% tests for \(1 \leq q \leq 100\) and \(1 \leq n \leq 10^{10}\).
-
Subtask 5: \(16.67\)% tests for \(1 \leq q \leq 1000\) and \(1 \leq n \leq 10^8\).
-
Subtask 6: \(16.67\)% tests for \(1 \leq q \leq 10.000\) and \(1 \leq n \leq 10^6\).
Example
Test 1
Input
1
1
Output
0
Note
There are no satisfied integer pair \((a, b)\) that \(1 \leq a < b \leq 1\)
Test 2
Input
2
10 25
Output
4
16
Note
In the first query, there are \(4\) satisfied pairs: {\(1, 4\)}, {\(1, 9\)}, {\(2, 8\)}, {\(4, 9\)}.
In the second query, there are \(16\) satisfied pairs: {\(1, 4\)}, {\(1, 9\)}, {\(1, 16\)}, {\(1, 25\)}, {\(2, 8\)}, {\(2, 18\)}, {\(3, 12\)}, {\(4, 9\)}, {\(4, 16\)}, {\(4, 25\)}, {\(5, 20\)}, {\(6, 24\)}, {\(8, 18\)}, {\(9, 16\)}, {\(9, 25\)}, {\(16, 25\)}.
Test 3
Input
10
123456789 234567890 345678901 456789012 567890123 678901234 789012345 890123456 901234567 12345678
Output
645956573
1273061974
1916838059
2571642223
3234719854
3903895878
4573092218
5191744600
5259963415
55955605
Bình luận