Cho một lưới \(n \times m\) và hai ô vuông \(a = (y_1, x_1)\) và \(b = (y_2, x_2)\), hãy tạo một đường đi từ \(a\) đến \(b\) mà đi qua mỗi ô vuông đúng một lần.
Ví dụ, đây là một đường đi từ \(a = (1, 3)\) đến \(b = (3, 6)\) trên một lưới \(4 \times 7\):
Input
Dòng đầu vào đầu tiên có một số nguyên \(t\): số lượng test.
Sau đó, có \(t\) dòng mô tả các test. Mỗi dòng có sáu số nguyên \(n\), \(m\), \(y_1\), \(x_1\), \(y_2\) và \(x_2\).
Trong tất cả test \(1 \leq y_1, y_2 \leq n\) và \(1 \leq x_1, x_2, \leq m\). Thêm vào đó, \(y_1 \neq y_2\) hoặc \(x_1 \neq x_2\).
Output
In ra YES
, nếu có thể xây dựng một đường đi, và NO
nếu ngược lại.
Nếu có một đường đi, hãy in thêm mô tả của nó bao gồm các kí tự U
(lên), D
(xuống), L
(trái) và R
(phải). Nếu có nhiều đường đi, bạn có thể in ra bất kì trong số chúng.
Giới hạn
- \(1 \leq t \leq 100\)
- \(1 \leq n \leq 50\)
- \(1 \leq m \leq 50\)
Ví dụ
Input:
5
1 3 1 1 1 3
1 3 1 2 1 3
2 2 1 1 2 2
2 2 1 1 2 1
4 7 1 3 3 6
Output:
YES
RR
NO
NO
YES
RDL
YES
RRRRDDDLLLLLLUUURDDRURDRURD
Bình luận
Okay
2 bình luận nữa