Số nguyên tố cân bằng (HSG'21)

Xem PDF



Thời gian:
Python 3 5.0s

Tác giả:
Dạng bài
Điểm: 300 (p) Thời gian: 1.0s Bộ nhớ: 640M Input: bàn phím Output: màn hình

Một số được gọi là số nguyên tố cân bằng nếu nó là số nguyên tố có \(2k + 1\) chữ số \((k \in \mathbb{N}^*)\), trong đó có \(2k\) chữ số giống nhau và có đúng \(1\) chữ số ở vị trí chính giữa (tức vị trí thứ \(k + 1\) từ trái sang phải) là khác với các chữ số còn lại.

Ví dụ: Số \(7778777\) là số cân bằng.

Yêu cầu:

Nhập từ bàn phím \(1\) số nguyên dương \(k\) \((k \le 7)\). Hãy tính và in ra màn hình số lượng các số nguyên tố cân bằng có \(2k + 1\) chữ số.

Example

Test 1

Input
3
Output
7
Note

\(7\) số nguyên dương có \(2 \times 3 + 1\) chữ số là số nguyên tố: \(1114111;1117111; 3331333; 3337333; 7772777; 7774777; 7778777\)


Bình luận