Điểm:
100
Thời gian:
2.0s
Bộ nhớ:
256M
Input:
bàn phím
Output:
màn hình
Hàm \(F(a)\) với \(a\) là một số nguyên dương được định nghĩa đệ quy như sau:
- Nếu \(a < 10, F(a) = a\).
- Nếu \(a > 9, F(a) = F\)(tổng các chữ số của a).
Ví dụ, \(F(91) = F(10) = 1\).
\(x\) trong đoạn \([l, r]\) mà \(F(x) = 9\).
cần các bạn đếm số lượng sốDễ dàng nhận thấy bài toán này có thể giải được bằng quy hoạch động chữ số cơ bản. Hãy thể hiện trình độ bản thân với
nhé.Input
-
Dòng đầu tiên chứa 1 số nguyên dương \(Q\) là lượng câu hỏi.
-
\(Q\) dòng tiếp theo chứa, mỗi dòng chứa 1 cặp số nguyên dương \(l, r\) biểu thị một đoạn.
Output
- \(Q\) dòng, mỗi dòng là số lượng số \(x\) tương ứng.
Scoring
-
Subtask \(1\) (\(50\%\) số điểm): \(Q \leq 100\) và \(1\) \(\leq\) \(l\) \(\leq\) \(r\) \(\leq\) \(10^{5}\).
-
Subtask \(1\) (\(50\%\) số điểm): \(Q \leq 10^{5}\) và \(1\) \(\leq\) \(l\) \(\leq\) \(r\) \(\leq\) \(10^{9}\).
Example
Test 1
Input
2
1 2
1 9
Output
0
1
Note
- Không có số \(x\) trong đoạn \([1, 2]\) mà \(F(x) = 9\).
- Chỉ có \(x = 9\) thuộc đoạn \([1, 9]\) và \(F(x) = 9\).
Bình luận
Hint ko cần quy hoạch động
Ta thấy các số chia hết cho 9 khi tính tổng đến khi là một chữ số thì đều ra 9
VD:
S(n) là tổng các chữ số của n
S(11187) = S(18) = S(9)
Khi ta thay hàm S(n) thành F(n) thì cơ chế cũng giống như vậy
=> Đếm các số chia hết cho 9 từ l đến r :)
P/S : Mình lớp 6 nên giải thích khá khó hiểu :v
Code Python (Không nên chép )
đúng mà sao ko nen chep:)
sao ko nên chép vậy bn =))
vì đó là for _ in range(q):
mà for _ in range(q) giống cách viết code của mấy con A.I nên bị nghi là chép code