Điểm:
400 (p)
Thời gian:
1.0s
Bộ nhớ:
1G
Input:
bàn phím
Output:
màn hình
Given \(n, k (1 \leq k \leq n \leq 10^6)\), count the number of arrays \(a[]\) of size \(k\) satisfies:
- \(1 \leq a_1 < a_2 < \dots < a_k \leq n\).
- \(a_i \times a_j\) is a perfect square \(\forall 1 \leq i < j \leq k\).
Since the result can be large, output it under modulo \(10^9 + 7\).
Example
Test 1
Input
2 1
Output
2
Note
There are \(2\) satisfied array of size \(1\): {\(1\)}, {\(2\)}.
Test 2
Input
10 2
Output
4
Note
There are \(4\) satisfied array of size \(2\): {\(1, 4\)}, {\(1, 9\)}, {\(2, 8\)}, {\(4, 9\)}.
Test 3
Input
27 3
Output
12
Note
There are \(12\) satisfied array of size \(3\): {\(1, 4, 9\)}, {\(1, 4, 16\)}, {\(1, 4, 25\)}, {\(1, 9, 16\)}, {\(1, 9, 25\)}, {\(1, 16, 25\)}, {\(2, 8, 18\)}, {\(3, 12, 27\)}, {\(4, 9, 16\)}, {\(4, 9, 25\)}, {\(4, 16, 25\)}, {\(9, 16, 25\)}.
Bình luận
Use the google translate and do
3 bình luận nữa