Hướng dẫn cho Hệ số nhị thức


Chỉ sử dụng khi thực sự cần thiết như một cách tôn trọng tác giả và người viết hướng dẫn này.

Chép code từ bài hướng dẫn để nộp bài là hành vi có thể dẫn đến khóa tài khoản.

Authors: kitsune

Subtask \(1\):

Tutorial

Sử dụng công thức: \(\displaystyle \binom{n}{k} = \frac{n!}{(n - k)! \cdot k!}\).

Độ phức tạp: \(O(n)\).

Subtask \(2\):

Tutorial

Sử dụng tam giác Pascal: \(\displaystyle \binom{n}{k} = \binom{n - 1}{k} + \binom{n - 1}{k - 1}\).

Độ phức tạp: \(O(n \cdot k)\).

Subtask \(3\):

Tutorial

Sử dụng nghịch đảo modulo.

Độ phức tạp: \(O(n)\).

Solution
C++
C++
#include <bits/stdc++.h>
using namespace std;

const int mod = 1e9 + 7;

int factorial(int n) {
    int res = 1;
    for (int i = 1; i <= n; i++) {
        res = res * (long long)i % mod;
    }

    return res;
}

int inverse(int x) {
    if (x <= 1) {
        return 1;
    }

    return (mod - mod / x) * (long long)inverse(mod % x) % mod;
}

int choose(int n, int k) {
    if (n < 0 || k < 0 || n < k) {
        return 0;
    }

    return factorial(n) * (long long)inverse(factorial(n - k) * (long long)factorial(k) % mod) % mod;
}

int main() {
    int n, k;
    cin >> n >> k;

    cout << choose(n, k) << "\n";

    return 0;
}
Pascal
Delphi
const 
modulo = 1000000007;

function factorial(n: longint): int64;
var
i: longint;
res: int64;
begin
    res := 1;
    for i := 1 to n do 
    begin
        res := res * i mod modulo;
    end;

    exit(res);
end;

function inverse(x: longint): int64;
begin
    if x <= 1 then
    begin
        exit(1);
    end;

    exit((modulo - modulo div x) * inverse(modulo mod x) mod modulo);
end;

function choose(n, k: longint): int64;
begin
    if (n < 0) or (k < 0) or (n < k) then
    begin
        exit(0);
    end;

    exit(factorial(n) * inverse(factorial(n - k) * factorial(k) mod modulo) mod modulo);
end;

var
n, k: longint;

begin
    readln(n, k);

    writeln(choose(n, k));
end.
Python
Python
mod = 10**9 + 7

def factorial(n):
    res = 1
    for i in range(1, n + 1):
        res = res * i % mod

    return res

def inverse(x):
    if x <= 1:
        return 1

    return (mod - mod // x) * inverse(mod % x) % mod

def choose(n, k):
    if n < 0 or k < 0 or n < k:
        return 0

    return factorial(n) * inverse(factorial(n - k) * factorial(k) % mod) % mod

n, k = map(int, input().split())

print(choose(n, k))

Subtask \(4\):

Tutorial

Ta sẽ tính trước các giá trị \(0!, 10^6!, (2 \cdot 10^6)!, (3 \cdot 10^6)!, \ldots, 10^9!\) (tổng cộng \(1001\) số) và lưu vào một mảng \(f\). Việc tính phải được thực hiện bên ngoài, xong rồi bạn chỉ cần dán kết quả vào trong code chính.

\(f\)
1, 641102369, 578095319, 5832229, 259081142, 974067448, 316220877, 690120224, 251368199, 980250487, 682498929, 134623568, 95936601, 933097914, 167332441, 598816162, 336060741, 248744620, 626497524, 288843364, 491101308, 245341950, 565768255, 246899319, 968999, 586350670, 638587686, 881746146, 19426633, 850500036, 76479948, 268124147, 842267748, 886294336, 485348706, 463847391, 544075857, 898187927, 798967520, 82926604, 723816384, 156530778, 721996174, 299085602, 323604647, 172827403, 398699886, 530389102, 294587621, 813805606, 67347853, 497478507, 196447201, 722054885, 228338256, 407719831, 762479457, 746536789, 811667359, 778773518, 27368307, 438371670, 59469516, 5974669, 766196482, 606322308, 86609485, 889750731, 340941507, 371263376, 625544428, 788878910, 808412394, 996952918, 585237443, 1669644, 361786913, 480748381, 595143852, 837229828, 199888908, 526807168, 579691190, 145404005, 459188207, 534491822, 439729802, 840398449, 899297830, 235861787, 888050723, 656116726, 736550105, 440902696, 85990869, 884343068, 56305184, 973478770, 168891766, 804805577, 927880474, 876297919, 934814019, 676405347, 567277637, 112249297, 44930135, 39417871, 47401357, 108819476, 281863274, 60168088, 692636218, 432775082, 14235602, 770511792, 400295761, 697066277, 421835306, 220108638, 661224977, 261799937, 168203998, 802214249, 544064410, 935080803, 583967898, 211768084, 751231582, 972424306, 623534362, 335160196, 243276029, 554749550, 60050552, 797848181, 395891998, 172428290, 159554990, 887420150, 970055531, 250388809, 487998999, 856259313, 82104855, 232253360, 513365505, 244109365, 1559745, 695345956, 261384175, 849009131, 323214113, 747664143, 444090941, 659224434, 80729842, 570033864, 664989237, 827348878, 195888993, 576798521, 457882808, 731551699, 212938473, 509096183, 827544702, 678320208, 677711203, 289752035, 66404266, 555972231, 195290384, 97136305, 349551356, 785113347, 83489485, 66247239, 52167191, 307390891, 547665832, 143066173, 350016754, 917404120, 296269301, 996122673, 23015220, 602139210, 748566338, 187348575, 109838563, 574053420, 105574531, 304173654, 542432219, 34538816, 325636655, 437843114, 630621321, 26853683, 933245637, 616368450, 238971581, 511371690, 557301633, 911398531, 848952161, 958992544, 925152039, 914456118, 724691727, 636817583, 238087006, 946237212, 910291942, 114985663, 492237273, 450387329, 834860913, 763017204, 368925948, 475812562, 740594930, 45060610, 806047532, 464456846, 172115341, 75307702, 116261993, 562519302, 268838846, 173784895, 243624360, 61570384, 481661251, 938269070, 95182730, 91068149, 115435332, 495022305, 136026497, 506496856, 710729672, 113570024, 366384665, 564758715, 270239666, 277118392, 79874094, 702807165, 112390913, 730341625, 103056890, 677948390, 339464594, 167240465, 108312174, 839079953, 479334442, 271788964, 135498044, 277717575, 591048681, 811637561, 353339603, 889410460, 839849206, 192345193, 736265527, 316439118, 217544623, 788132977, 618898635, 183011467, 380858207, 996097969, 898554793, 335353644, 54062950, 611251733, 419363534, 965429853, 160398980, 151319402, 990918946, 607730875, 450718279, 173539388, 648991369, 970937898, 500780548, 780122909, 39052406, 276894233, 460373282, 651081062, 461415770, 358700839, 643638805, 560006119, 668123525, 686692315, 673464765, 957633609, 199866123, 563432246, 841799766, 385330357, 504962686, 954061253, 128487469, 685707545, 299172297, 717975101, 577786541, 318951960, 773206631, 306832604, 204355779, 573592106, 30977140, 450398100, 363172638, 258379324, 472935553, 93940075, 587220627, 776264326, 793270300, 291733496, 522049725, 579995261, 335416359, 142946099, 472012302, 559947225, 332139472, 499377092, 464599136, 164752359, 309058615, 86117128, 580204973, 563781682, 954840109, 624577416, 895609896, 888287558, 836813268, 926036911, 386027524, 184419613, 724205533, 403351886, 715247054, 716986954, 830567832, 383388563, 68409439, 6734065, 189239124, 68322490, 943653305, 405755338, 811056092, 179518046, 825132993, 343807435, 985084650, 868553027, 148528617, 160684257, 882148737, 591915968, 701445829, 529726489, 302177126, 974886682, 241107368, 798830099, 940567523, 11633075, 325334066, 346091869, 115312728, 473718967, 218129285, 878471898, 180002392, 699739374, 917084264, 856859395, 435327356, 808651347, 421623838, 105419548, 59883031, 322487421, 79716267, 715317963, 429277690, 398078032, 316486674, 384843585, 940338439, 937409008, 940524812, 947549662, 833550543, 593524514, 996164327, 987314628, 697611981, 636177449, 274192146, 418537348, 925347821, 952831975, 893732627, 1277567, 358655417, 141866945, 581830879, 987597705, 347046911, 775305697, 125354499, 951540811, 247662371, 343043237, 568392357, 997474832, 209244402, 380480118, 149586983, 392838702, 309134554, 990779998, 263053337, 325362513, 780072518, 551028176, 990826116, 989944961, 155569943, 596737944, 711553356, 268844715, 451373308, 379404150, 462639908, 961812918, 654611901, 382776490, 41815820, 843321396, 675258797, 845583555, 934281721, 741114145, 275105629, 666247477, 325912072, 526131620, 252551589, 432030917, 554917439, 818036959, 754363835, 795190182, 909210595, 278704903, 719566487, 628514947, 424989675, 321685608, 50590510, 832069712, 198768464, 702004730, 99199382, 707469729, 747407118, 302020341, 497196934, 5003231, 726997875, 382617671, 296229203, 183888367, 703397904, 552133875, 732868367, 350095207, 26031303, 863250534, 216665960, 561745549, 352946234, 784139777, 733333339, 503105966, 459878625, 803187381, 16634739, 180898306, 68718097, 985594252, 404206040, 749724532, 97830135, 611751357, 31131935, 662741752, 864326453, 864869025, 167831173, 559214642, 718498895, 91352335, 608823837, 473379392, 385388084, 152267158, 681756977, 46819124, 313132653, 56547945, 442795120, 796616594, 256141983, 152028387, 636578562, 385377759, 553033642, 491415383, 919273670, 996049638, 326686486, 160150665, 141827977, 540818053, 693305776, 593938674, 186576440, 688809790, 565456578, 749296077, 519397500, 551096742, 696628828, 775025061, 370732451, 164246193, 915265013, 457469634, 923043932, 912368644, 777901604, 464118005, 637939935, 956856710, 490676632, 453019482, 462528877, 502297454, 798895521, 100498586, 699767918, 849974789, 811575797, 438952959, 606870929, 907720182, 179111720, 48053248, 508038818, 811944661, 752550134, 401382061, 848924691, 764368449, 34629406, 529840945, 435904287, 26011548, 208184231, 446477394, 206330671, 366033520, 131772368, 185646898, 648711554, 472759660, 523696723, 271198437, 25058942, 859369491, 817928963, 330711333, 724464507, 437605233, 701453022, 626663115, 281230685, 510650790, 596949867, 295726547, 303076380, 465070856, 272814771, 538771609, 48824684, 951279549, 939889684, 564188856, 48527183, 201307702, 484458461, 861754542, 326159309, 181594759, 668422905, 286273596, 965656187, 44135644, 359960756, 936229527, 407934361, 267193060, 456152084, 459116722, 124804049, 262322489, 920251227, 816929577, 483924582, 151834896, 167087470, 490222511, 903466878, 361583925, 368114731, 339383292, 388728584, 218107212, 249153339, 909458706, 322908524, 202649964, 92255682, 573074791, 15570863, 94331513, 744158074, 196345098, 334326205, 9416035, 98349682, 882121662, 769795511, 231988936, 888146074, 137603545, 582627184, 407518072, 919419361, 909433461, 986708498, 310317874, 373745190, 263645931, 256853930, 876379959, 702823274, 147050765, 308186532, 175504139, 180350107, 797736554, 606241871, 384547635, 273712630, 586444655, 682189174, 666493603, 946867127, 819114541, 502371023, 261970285, 825871994, 126925175, 701506133, 314738056, 341779962, 561011609, 815463367, 46765164, 49187570, 188054995, 957939114, 64814326, 933376898, 329837066, 338121343, 765215899, 869630152, 978119194, 632627667, 975266085, 435887178, 282092463, 129621197, 758245605, 827722926, 201339230, 918513230, 322096036, 547838438, 985546115, 852304035, 593090119, 689189630, 555842733, 567033437, 469928208, 212842957, 117842065, 404149413, 155133422, 663307737, 208761293, 206282795, 717946122, 488906585, 414236650, 280700600, 962670136, 534279149, 214569244, 375297772, 811053196, 922377372, 289594327, 219932130, 211487466, 701050258, 398782410, 863002719, 27236531, 217598709, 375472836, 810551911, 178598958, 247844667, 676526196, 812283640, 863066876, 857241854, 113917835, 624148346, 726089763, 564827277, 826300950, 478982047, 439411911, 454039189, 633292726, 48562889, 802100365, 671734977, 945204804, 508831870, 398781902, 897162044, 644050694, 892168027, 828883117, 277714559, 713448377, 624500515, 590098114, 808691930, 514359662, 895205045, 715264908, 628829100, 484492064, 919717789, 513196123, 748510389, 403652653, 574455974, 77123823, 172096141, 819801784, 581418893, 15655126, 15391652, 875641535, 203191898, 264582598, 880691101, 907800444, 986598821, 340030191, 264688936, 369832433, 785804644, 842065079, 423951674, 663560047, 696623384, 496709826, 161960209, 331910086, 541120825, 951524114, 841656666, 162683802, 629786193, 190395535, 269571439, 832671304, 76770272, 341080135, 421943723, 494210290, 751040886, 317076664, 672850561, 72482816, 493689107, 135625240, 100228913, 684748812, 639655136, 906233141, 929893103, 277813439, 814362881, 562608724, 406024012, 885537778, 10065330, 60625018, 983737173, 60517502, 551060742, 804930491, 823845496, 727416538, 946421040, 678171399, 842203531, 175638827, 894247956, 538609927, 885362182, 946464959, 116667533, 749816133, 241427979, 871117927, 281804989, 163928347, 563796647, 640266394, 774625892, 59342705, 256473217, 674115061, 918860977, 322633051, 753513874, 393556719, 304644842, 767372800, 161362528, 754787150, 627655552, 677395736, 799289297, 846650652, 816701166, 687265514, 787113234, 358757251, 701220427, 607715125, 245795606, 600624983, 10475577, 728620948, 759404319, 36292292, 491466901, 22556579, 114495791, 647630109, 586445753, 482254337, 718623833, 763514207, 66547751, 953634340, 351472920, 308474522, 494166907, 634359666, 172114298, 865440961, 364380585, 921648059, 965683742, 260466949, 117483873, 962540888, 237120480, 620531822, 193781724, 213092254, 107141741, 602742426, 793307102, 756154604, 236455213, 362928234, 14162538, 753042874, 778983779, 25977209, 49389215, 698308420, 859637374, 49031023, 713258160, 737331920, 923333660, 804861409, 83868974, 682873215, 217298111, 883278906, 176966527, 954913, 105359006, 390019735, 10430738, 706334445, 315103615, 567473423, 708233401, 48160594, 946149627, 346966053, 281329488, 462880311, 31503476, 185438078, 965785236, 992656683, 916291845, 881482632, 899946391, 321900901, 512634493, 303338827, 121000338, 967284733, 492741665, 152233223, 165393390, 680128316, 917041303, 532702135, 741626808, 496442755, 536841269, 131384366, 377329025, 301196854, 859917803, 676511002, 373451745, 847645126, 823495900, 576368335, 73146164, 954958912, 847549272, 241289571, 646654592, 216046746, 205951465, 3258987, 780882948, 822439091, 598245292, 869544707, 698611116

Khi đó, để tìm \(n!\), ta chỉ cần tìm \(f_i\) gần với \(n!\) nhất rồi tính bằng công thức \(n! = n \cdot (n - 1) \cdot (n - 2) \cdot \ldots \cdot f_i\).

Vì khoảng cách giữa hai \(f\) liên tiếp chỉ có \(10^6\) nên số lần duyệt để tính sẽ không quá \(10^6\).

Độ phức tạp: \(O(10^6)\).

Solution
C++
C++
#include <bits/stdc++.h>
using namespace std;

const int mod = 1e9 + 7;

int f[] = {}; // 1001 numbers 0e6!, 1e6!, 2e6!, ..., 1e9!

int factorial(int n) {
    int res = f[n / int(1e6)];
    for (int i = n / int(1e6) * int(1e6) + 1; i <= n; i++) {
        res = res * (long long)i % mod;
    }

    return res;
}

int inverse(int x) {
    if (x <= 1) {
        return 1;
    }

    return (mod - mod / x) * (long long)inverse(mod % x) % mod;
}

int choose(int n, int k) {
    if (n < 0 || k < 0 || n < k) {
        return 0;
    }

    return factorial(n) * (long long)inverse(factorial(n - k) * (long long)factorial(k) % mod) % mod;
}

int main() {
    int n, k;
    cin >> n >> k;

    cout << choose(n, k) << "\n";

    return 0;
}
Pascal
Delphi
const 
modulo = 1000000007;

var
f: array[0..1000] of longint = (); // 1001 numbers 0e6!, 1e6!, 2e6!, ..., 1e9!

function factorial(n: longint): int64;
var
i: longint;
res: int64;
begin
    res := f[n div 1000000];
    for i := n div 1000000 * 1000000 + 1 to n do 
    begin
        res := res * i mod modulo;
    end;

    exit(res);
end;

function inverse(x: longint): int64;
begin
    if x <= 1 then
    begin
        exit(1);
    end;

    exit((modulo - modulo div x) * inverse(modulo mod x) mod modulo);
end;

function choose(n, k: longint): int64;
begin
    if (n < 0) or (k < 0) or (n < k) then
    begin
        exit(0);
    end;

    exit(factorial(n) * inverse(factorial(n - k) * factorial(k) mod modulo) mod modulo);
end;

var
n, k: longint;

begin
    readln(n, k);

    writeln(choose(n, k));
end.
Python
Python
mod = 10**9 + 7

f = [] # 1001 numbers 0e6!, 1e6!, 2e6!, ..., 1e9!

def factorial(n):
    res = f[n // 10**6]
    for i in range(n // 10**6 * 10**6 + 1, n + 1):
        res = res * i % mod

    return res

def inverse(x):
    if x <= 1:
        return 1

    return (mod - mod // x) * inverse(mod % x) % mod

def choose(n, k):
    if n < 0 or k < 0 or n < k:
        return 0

    return factorial(n) * inverse(factorial(n - k) * factorial(k) % mod) % mod

n, k = map(int, input().split())

print(choose(n, k))

Subtask \(5\):

Tutorial

Sủ dụng định lý Lucas.

Độ phức tạp: \(O(10^6)\).



Bình luận


  • -1
    khai434343    1:04 p.m. 6 Tháng 8, 2024

    cái này mk chưa làm, vậy mình chưa chép code đâu đừng lo


    • 0
      kietlqt    8:46 a.m. 7 Tháng 8, 2024

      nói thế ai tin đây


      • 0
        khai434343    12:07 p.m. 7 Tháng 8, 2024

        tin đi tại vì tui học cái này lâu rồi

    3 bình luận nữa